A NOVEL REACTION OF 1-PHOSPHONYLOXY-<u>F</u>-1-ALKENEPHOSPHONATES: HIGHLY EFFECTIVE METHOD FOR THE SYNTHESIS OF α,β -UNSATURATED F-CARBOXYLIC ACID DERIVATIVES

Takashi Ishihara,* Yasuhiro Yamasaki, and Teiichi Ando Department of Industrial Chemistry, Faculty of Engineering, Kyoto University, Yoshida, Kyoto 606, Japan

Abstract: 1-Phosphonyloxy- \underline{F} -l-alkenephosphonates, easily prepared from \underline{F} -alkanoic acid chlorides and triethyl phosphite, undergo a unique fluoride ion-catalyzed reaction with primary and secondary amines or alcohols to afford the corresponding α,β -unsaturated \underline{F} -carboxylic acid derivatives in excellent yields, along with diethyl fluorophosphate and phosphite.

 α,β -Unsaturated carboxylic acid derivatives are one of the most valuable compounds in organic synthesis and a variety of methods have been developed so far for their preparation. There have been reported, however, very few methods which are effective for preparing per-fluorinated analogues,¹ and they are still generally difficult to obtain.

This communication deals with a new fluoride ion-catalyzed reaction of 1-phosphonyloxy-<u>F</u>-1-alkenephosphonate² with amines or alcohols, providing a simple, efficient method generally applicable for the synthesis of α,β -unsaturated <u>F</u>-carboxylic acid derivatives.

The reaction was performed in the following manner. To a solution of a primary or secondary amine (1.0 equiv) or an alcohol (1.5 equiv) and tetrabutylammonium fluoride (TBAF) (10-30 mol%, 1M in tetrahydrofuran) in anhydrous CH_2Cl_2 was added 1-phosphonyloxy-<u>F</u>-1-alkene-phosphonate (1) at 0°C. The mixture was efficiently stirred at ambient temperature for 2 h. Quenching of the reaction with water followed by extraction (Et₂O), drying (Na₂SO₄), concentration <u>in vacuo</u>, and distillation or column chromatography on silica gel gave analytically pure product (2).³ The results of the reaction are summarized in Table I.

Cesium fluoride could also be used instead of TBAF as a source of fluoride ion though an equimolar amount was needed for completion of the reaction. Products derived from secondary amines, <u>i.e.</u>, N,N-disubstituted carboxamides (2, Nu=NR₂) were readily converted to the corresponding free acid³ (2, Nu=OH) on silica-gel column chromatography.

Monitoring the reaction by use of 19 F and 31 P NMR showed that both diethyl fluorophosphate and phosphite were concurrently produced as the reaction proceeded. In almost all reactions, trace amounts of 1<u>H</u>-<u>F</u>-alkanecarboxylic acid derivatives³ were detected by 19 F NMR, together with 2. These findings strongly suggest the formation of <u>F</u>-alkylfluoroketene intermediates in the present reaction.⁴

Rf	Nu	Yield (%)	E/Z ^a
CF ₃	NHCH ₂ (CH ₂) ₆ CH ₃	91	79/21
	NH-c-C ₆ H ₁₁	84	80/20
	NHCH ₂ Ph	94	83/17
	NHCH ₂ (CH ₂) ₂ OH	73	73/27
	$N(CH(CH_3)_2)_2$	80	80/20
	OCH ₂ CH ₃	90 ^b	82/18
CF3(CF2)3CF2	NHCH ₂ Ph	89	99/1
	NHCH ₂ CH=CH ₂	83	99/1
	$N(CH(CH_3)_2)_2$	83	95/5
	OCH ₂ CH ₃	97 ^b	99/1
CF ₃ (CF ₂) ₅ CF ₂	NHCH ₂ CH ₂ CH ₃	88	100/0
	NHCH ₂ Ph	94	99/1
	OCH ₂ CH ₃	77 ^b	99/1

Table I. Synthesis of α,β -Unsaturated <u>F</u>-Carboxylic Acid Derivatives 2

a) Determined by $^{19}\mathrm{F}$ NMR analysis. b) An excess amount (1.5 equiv) of alcohol was used.

Above-obtained carboxamides 2 could be employed to synthesize fluorinated pyrimidinones, one of the biologically most interesting heterocyclic compounds:⁵ Treatment of 2 ($R_f=CF_3$) with urea and triethylamine in dimethylformamide at 120°C for 4 d gave the corresponding 3^3 in good yields.

R=n-Oct (55%); R=PhCH₂ (60%); R=c-Hex (55%)

References and Notes

- H.M. Hudlicky, "Chemistry of Organic Fluorine Compounds," Halstead Press, 1976; T. Nguyen, M. Rubinstein, and C. Wakselman, J. Fluorine Chem., 11, 573 (1978).
- For the preparation of 1 and its synthetic applications, see: T. Ishihara, T. Maekawa, and T. Ando, Tetrahedron Lett., 24, 4229 (1983); <u>Idem</u>, <u>ibid</u>., 25, 1377 (1984); T. Ishihara, Y. Yamasaki, and T. Ando, <u>ibid</u>., 26, 79 (1985); T. Ishihara, T. Maekawa, and T. Ando, <u>ibid</u>., 27, 357 (1986).
- 3. All products were fully characterized on the basis of their spectral (IR, mass, 1 H and 19 F NMR) and analytical data.
- 4. The details of the reaction mechanism will be discussed in a full paper.
- I. Kumadaki, J. Synth. Org. Chem. Jpn., 42, 786 (1984); H. Yoshioka, C. Takayama, and N. Matsuo, <u>ibid</u>., 42, 809 (1984); T. Fuchikami, A. Yamanouchi, and I. Ojima, Synthesis, 1984, 766; I. Ikeda, Y. Kogame, and M. Okahara, J. Org. Chem., 50, 3640 (1985).

(Received in Japan 8 February 1986)